Laws and Theorems of Boolean Algebra

Operations with 0 and 1:

1. \(X + 0 = X \)
2. \(X + 1 = 1 \)

Idempotent laws

3. \(X + X = X \)

Involution law:

4. \((X')' = X \)

Laws of complementarity:

5. \(X + X' = 1 \)

Commutative laws:

6. \(X + Y = Y + X \)

Associative laws:

7. \((X + Y) + Z = X + (Y + Z) \)
 \[= X + Y + Z \]

Distributive laws:

8. \(X(Y + Z) = XY + XZ \)

Simplification theorems:

9. \(X Y + X Y' = X \)
10. \(X + XY = X \)
11. \((X + Y') Y = XY \)

DeMorgan’s laws:

12. \((X + Y + Z + \ldots)' = X'Y'Z'\ldots \)
13. \[f(X_1, X_2, \ldots X_N, 0, 1, +, \cdot) \]’ = \(f(X'_1, X'_2, \ldots X'_N, 1, 0, \cdot , +) \)

Duality:

14. \((X + Y + Z + \ldots)^D = X Y Z \ldots \)
15. \[f(X_1, X_2, \ldots X_N, 0, 1, +, \cdot) \]^D = \(f(X_1, X_2, \ldots X_N, 1, 0, \cdot , +) \)

Theorem for multiplying out and factoring:

16. \((X + Y)(X' + Z) = X Z + X' Y \)

Consensus theorem:

17. \(XY + YZ + X'Z = XY + X'Z \)

18. \((X + Y)(Y + Z)(X' + Z) = (X + Y)(X' + Z) \)